You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.

×

Recommended by

Indexed by

Engineering epitaxial interfaces for topological insulator – superconductor hybrid devices with Al electrodes

Abdur Rehman Jalil1,2*, Tobias W. Schmitt1,2, Philipp Rüßmann3,4*, Xian-Kui Wei5, Benedikt Frohn1,2, Michael Schleenvoigt1,2, Wilhelm Wittl1, Xiao Hou2,6, Anne Schmidt1,2, Kaycee Underwood1, Gustav Bihlmayer3, Martina Luysberg5, Joachim Mayer5,6, Stefan Blügel3, Detlev Grützmacher3,2, Peter Schüffelgen1,2

1 Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany

2 JARA-FIT (Fundamentals of Future Information Technology), Jülich-Aachen Research Alliance, Forschungszentrum Jülich and RWTH Aachen University, 52425 Jülich, Germany

3 Peter Grünberg Institute (PGI-1), Forschungszentrum Jülich, 52425 Jülich, Germany

4 Institute for Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany

5 Ernst Ruska-Centre (ER-C) for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

6 Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52074 Aachen, Germany

* Corresponding authors emails: a.jalil@fz-juelich.de, p.ruessmann@fz-juelich.de
DOI10.24435/materialscloud:w3-3c [version v1]

Publication date: Oct 28, 2024

How to cite this record

Abdur Rehman Jalil, Tobias W. Schmitt, Philipp Rüßmann, Xian-Kui Wei, Benedikt Frohn, Michael Schleenvoigt, Wilhelm Wittl, Xiao Hou, Anne Schmidt, Kaycee Underwood, Gustav Bihlmayer, Martina Luysberg, Joachim Mayer, Stefan Blügel, Detlev Grützmacher, Peter Schüffelgen, Engineering epitaxial interfaces for topological insulator – superconductor hybrid devices with Al electrodes, Materials Cloud Archive 2024.174 (2024), https://doi.org/10.24435/materialscloud:w3-3c

Description

Proximity-induced superconductivity in hybrid devices of topological insulators and superconductors offers a promising platform for the pursuit of elusive topological superconductivity and its anticipated applications, such as fault-tolerant quantum computing. To study and harness such hybrid devices, a key challenge is the realization of highly functional material interfaces with a suitable superconductor featuring 2e-periodic parity-conserving transport to ensure a superconducting hard-gap free of unpaired electrons, which is important for Majorana physics. A superconductor well-known for this characteristic is Al, however, its direct integration into devices based on tetradymite topological insulators has so far been found to yield non-transparent interfaces. By focusing on Bi₂Te₃-Al heterostructures, this study identifies detrimental interdiffusion processes at the interface through atomically resolved structural and chemical analysis, and showcase their mitigation by leveraging different interlayers – namely Nb, Ti, Pd, and Pt – between Bi₂Te₃ and Al. Through structural transformation of the interlayer materials (X) into their respective tellurides (XTe₂) atomically-sharp epitaxial interfaces are engineered and further characterized in low-temperature transport experiments on Al-X-Bi₂Te₃-X-Al Josephson junctions and in complementary density functional theory calculations. By demonstrating functional interfaces between Bi₂Te₃ and Al, this work provides key insights and paves the way for the next generation of sophisticated topological devices.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
README.md
MD5md5:a44c9f183e139b521253165d31249405
4.7 KiB Description of the dataset
requirements.txt
MD5md5:f38b4411f7bc60a5b4069ec2b22795cc
5.2 KiB Requirements file for python environment
util.py
MD5md5:f0298db011633180e41be2d47e0c5dbe
10.6 KiB Utilities used in plotting
Figures_for_paper_1_normal_state.ipynb
MD5md5:a5677d10d3df61f1befb998f15447934
7.5 MiB Plotting of normal state DFT figures
Figures_for_paper_2_BdG.ipynb
MD5md5:c06734740b87a7e7b0127a1a618e368e
186.6 KiB Plotting of DFT data for superconducting state
struct_PtTe2.xsf
MD5md5:039dfccf9c4ea9231aa1500f420bcf78
1.4 KiB Relaxed structure of PtTe2/Bi2Te3
struct_TiTe2.xsf
MD5md5:bc78f7c75aa5b092f8109b2d8c3b7220
1.4 KiB Relaxed structure of TiTe2/Bi2Te3
struct_PdTe2.xsf
MD5md5:e03e64926245e2ac7e774f78b7f5ab2a
1.4 KiB Relaxed structure of PdTe2/Bi2Te3
struct_NbTe2.xsf
MD5md5:647772f8e789a742db1e184934e29aff
1.4 KiB Relaxed structure of NbTe2/Bi2Te3
struct_PdTe2Bi.xsf
MD5md5:1187d157e2dea5e56ab78c199f6c265b
1.6 KiB Relaxed structure of PdTe2/Bi2/Bi2Te3
struct_PtTe2Bi.xsf
MD5md5:6f67b31c598f9237396707d21fada108
1.6 KiB Relaxed structure of PtTe2/Bi2/Bi2Te3
struct_NbTe2Bi.xsf
MD5md5:f6ec3cf5b545b24d8be05f635e0c815b
1.6 KiB Relaxed structure of NbTe2/Bi2/Bi2Te3
struct_TiTe2Bi.xsf
MD5md5:f4a061dc7057eb69100b1afc2a367da4
1.6 KiB Relaxed structure of TiTe2/Bi2/Bi2Te3
export.aiida
MD5md5:80055ebeee39d081054eee60458f6d2b
Open this AiiDA archive on renkulab.io (https://renkulab.io/)
4.9 GiB AiiDA export file containing DFT data of this dataset
Transport_data.zip
MD5md5:ec596de0ba933a8eb7f450f2c0f1bede
14.6 MiB Raw data and analysis of transport experiments

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

External references

Preprint (Preprint where the data is discussed)
A. R. Jalil, T. W. Schmitt, P. Rüßmann, X.-K. Wei, B. Frohn, M. Schleenvoigt, W. Wittl, X. Hou, A. Schmidt, K. Underwood, G. Bihlmayer, M. Luysberg, J. Mayer, S. Blügel, D. Grützmacher, P. Schüffelgen, under review (2024)
Software (Source code for the AiiDA-KKR plugin)
P. Rüßmann, F. Bertoldo, J. Bröder, J. Wasmer, R. Mozumder, J. Chico, and S. Blügel, Zenodo (2021) doi:10.5281/zenodo.3628251
Journal reference (AiiDA-KKR method paper)
P. Rüßmann, F. Bertoldo, and S. Blügel, The AiiDA-KKR plugin and its application to high-throughput impurity embedding into a topological insulator. npj Comput Mater 7, 13 (2021) doi:10.1038/s41524-020-00482-5
Software (Source code of the JuKKR code)
The JuKKR developers, JuDFTteam/JuKKR: v3.6 (v3.6), Zenodo. (2022) doi:10.5281/zenodo.7284739
Journal reference (Kohn-Sham Bogoliubov-de Gennes method paper for JuKKR)
P. Rüßmann and S. Blügel, Phys. Rev. B 105, 125143 (2022) doi:10.1103/PhysRevB.105.125143
Software (Source code of the FLEUR code)
D. Wortmann et al., FLEUR, Zenodo (2024) doi:10.5281/zenodo.7576163

Keywords

topological superconductivity superconductors epitaxial interfaces interface engineering Majorana platform hybrid devices Josephson junctions TMDC topological insulator topological materials JuKKR FLEUR DFT

Version history:

2024.174 (version v1) [This version] Oct 28, 2024 DOI10.24435/materialscloud:w3-3c