You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.
Publication date: Oct 31, 2021
We present an ab initio modeling framework to simulate Majorana transport in 2D semiconducting materials, paving the way for topological qubits based on 2D nanoribbons. By combining density-functional-theory and quantum transport calculations, we show that the signature of Majorana bound states (MBSs) can be found in 2D material systems as zero-energy modes with peaks in the local density-of-states. The influence of spin-orbit coupling and external magnetic fields on Majorana transport is studied for two relevant 2D materials, WSe2 and PbI2. To illustrate the capabilities of the proposed ab initio platform, a device structure capable of hosting MBSs is created from a PbI2 nanoribbon and carefully investigated. These results are compared to InSb nanowires and used to provide design guidelines for 2D topological qubits.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
IEDM2020.zip
MD5md5:2b3dd1aed6ba0c79db0b9ca34ed3af41
|
15.3 MiB | Input files for VASP and Wannier90 with and without spin-orbit coupling to reproduce Hamiltonians for PbI2 and WSe2, and OMEN transport characteristics |
README.txt
MD5md5:8e303a7a06be1c195625530e90b23d24
|
765 Bytes | README file |
2021.185 (version v1) [This version] | Oct 31, 2021 | DOI10.24435/materialscloud:8c-r3 |