You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.

Kinetic Pathways of Ionic Transport in Fast Charging Lithium Titanate


JSON Export

{
  "id": "300", 
  "metadata": {
    "license_addendum": "", 
    "edited_by": 98, 
    "mcid": "2020.0006/v1", 
    "is_last": true, 
    "publication_date": "Jan 14, 2020, 00:00:00", 
    "version": 1, 
    "owner": 17, 
    "conceptrecid": "299", 
    "doi": "10.24435/materialscloud:2020.0006/v1", 
    "description": "Fast-charging batteries typically employ electrodes capable of accommodating lithium continuously via solid-solution transformation because they have few kinetic barriers apart from Li+ diffusion. One exception is lithium titanate, an anode that exhibits extraordinary rate capability seemingly inconsistent with its two-phase reaction and slow diffusion within the two phases. Through real-time tracking of Li+ migration using operando electron energy-loss spectroscopy (EELS) along with simulation of the EELS spectra, we observe that the kinetic pathway that enables facile ionic transport in lithium titanate consists of distorted Li polyhedra in metastable intermediate states. Thus, fast-charging electrodes may not be controlled solely by the intrinsic ionic diffusivity of macroscopic phases, but also by the transport via kinetically accessible low-energy landscapes. \r\n\r\nIn order to understand the origin of various EELS spectra features, we simulate EELS spectra using the Vienna Ab initio Simulation (VASP) package. For a specific Li in a given configuration, this is done by calculating the DOS and integrated DOS considering a Li core-hole on the position of the specific Li and calculating the EELS based on the DOS. We also calculated the minimum energy paths (MEP) and migration energy of Li in various compositions, including Li4Ti5O12 with an additional Li carrier, Li5Ti5O12 with an additional Li carrier, and Li7Ti5O12 with a Li vacancy carrier. The calculation was performed using the nudged elastic band (NEB) method in VASP. Analysis of the VASP outputs was done using scripts from Transition State Tools for VASP (VTST, https://theory.cm.utexas.edu/vtsttools/index.html). We present here the relevant input and output files from the VASP calculations, the python code used to generate EELS spectra from VASP outputs, and the outputs of the VTST scripts that were used to generate MEP plots.", 
    "id": "300", 
    "title": "Kinetic Pathways of Ionic Transport in Fast Charging Lithium Titanate", 
    "status": "published", 
    "keywords": [
      "VASP", 
      "ionic transport", 
      "electron energy-loss spectroscopy simulation", 
      "nudged elastic band"
    ], 
    "_oai": {
      "id": "oai:materialscloud.org:300"
    }, 
    "references": [
      {
        "url": "https://science.sciencemag.org/content/367/6481/1030", 
        "comment": "Paper in which the calculation results are presented and discussed", 
        "doi": "10.1126/science.aax3520", 
        "type": "Journal reference", 
        "citation": "W. Zhang, D.H. Seo, T. Chen, L. Wu, M. Topsakal, Y. Zhu, D. Lu, G. Ceder, F. Wang,  Science, Vol. 367, Issue 6481, pp. 1030-1034, 28 Feb 2020"
      }
    ], 
    "license": "Creative Commons Attribution 4.0 International", 
    "contributors": [
      {
        "affiliations": [
          "Department of Materials Science and Engineering, UC Berkeley, Berkeley, California 94720, USA"
        ], 
        "familyname": "Chen", 
        "email": "tina.chen@berkeley.edu", 
        "givennames": "Tina"
      }, 
      {
        "affiliations": [
          "Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea"
        ], 
        "familyname": "Seo", 
        "email": "dseo@unist.ac.kr", 
        "givennames": "Dong-hwa"
      }
    ], 
    "_files": [
      {
        "checksum": "md5:674e7fa7c3b2c5d718e20ececd511719", 
        "key": "neb.tar.gz", 
        "size": 40354937, 
        "description": "VASP inputs and outputs and analysis for calculation of  migration energy of Li"
      }, 
      {
        "checksum": "md5:554f6c7aa4c2f20fbbee1aa58d7dec11", 
        "key": "README.txt", 
        "size": 101709, 
        "description": "README file, containing a summary of the work and more detailed information on the files in eels.tar.gz and neb.tar.gz"
      }, 
      {
        "checksum": "md5:3589b4e951e2b2c434e103bfc39522c8", 
        "key": "eels.tar.gz", 
        "size": 877701743, 
        "description": "VASP inputs and outputs and analysis for simulation of electron energy-loss spectroscopy"
      }
    ]
  }, 
  "created": "2020-05-12T13:53:38.414039+00:00", 
  "updated": "2020-01-14T00:00:00+00:00", 
  "revision": 1
}