You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.
{ "updated": "2025-05-14T14:34:07.260471+00:00", "id": "2681", "revision": 11, "metadata": { "license_addendum": null, "_oai": { "id": "oai:materialscloud.org:2681" }, "status": "published", "mcid": "2025.75", "id": "2681", "doi": "10.24435/materialscloud:3k-9k", "title": "Data and analyses for first proton-coupled electron transfer of water oxidation at the BiVO\u2084-water interface", "edited_by": 1770, "license": "Creative Commons Attribution 4.0 International", "version": 1, "publication_date": "May 14, 2025, 16:31:38", "contributors": [ { "familyname": "Zhuang", "affiliations": [ "Chaire de Simulation \u00e0 l\u2019Echelle Atomique (CSEA), Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland" ], "givennames": "Yong-Bin", "email": "yongbin.zhuang@epfl.ch" }, { "familyname": "Pasquarello", "affiliations": [ "Chaire de Simulation \u00e0 l\u2019Echelle Atomique (CSEA), Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland" ], "givennames": "Alfredo", "email": "alfredo.pasquarello@epfl.ch" } ], "references": [ { "doi": "10.1002/anie.202507071", "citation": "Y.-B. Zhuang, A. Pasquarello, Angew. Chem. Int. Ed., e202507071 (2025)", "type": "Journal reference", "url": "https://doi.org/10.1002/anie.202507071" } ], "owner": 1770, "_files": [ { "size": 231294336, "checksum": "md5:46e613715f643a1848833fda279c1825", "description": "NEB inputs and trajectory", "key": "00.raw_data.00.NEB_traj.tgz" }, { "size": 21411, "checksum": "md5:ac90036d2dfe47077a0e595ac3d7c6b4", "description": "Active learning inputs for ai2-kit", "key": "00.raw_data.02.CLL.tgz" }, { "size": 1898257289, "checksum": "md5:5ef5a3ffc21cbe8b7f10cbc0cf8ff073", "description": "Machine learning potentials, training data sets, testing data sets, and testing results", "key": "00.raw_data.04.potentials.tgz" }, { "size": 25464807187, "checksum": "md5:8834db6ce86dc3e62a2a483fd7d41a78", "description": "OPES inputs, trajectory, and spin cubes for important structures.", "key": "00.raw_data.05.opes.tgz" }, { "size": 330527316, "checksum": "md5:518c1488e91590b13746164a845818b0", "description": "Trajectories of normal MD", "key": "00.raw_data.06.1ns-MD.tgz" }, { "size": 363452, "checksum": "md5:b3d8645c2489568a6f0646ba4e270f0d", "description": "NEB profiles and NEB collective variables (Jupyter Notebook Figure S4 and S5).", "key": "01.NEB.tgz" }, { "size": 3646064, "checksum": "md5:3a6c0a78b528d46e0d40dbe3f987676c", "description": "Fitting errors of machine learning potentials on training sets (Jupyter Notebook).", "key": "02.potential_test.tgz" }, { "size": 12169, "checksum": "md5:d8f41a1d35338b23a467b10d355e15a1", "description": "Results of cutoff test for CP2K.", "key": "03.cutoff_test.tgz" }, { "size": 22201184, "checksum": "md5:ec8ea0d853a4fcbf26df113d48967902", "description": "Free-energy surfaces and convergence of OPES simulations (Jupyter Notebook Figure 2a,b, S6, and S7).", "key": "04.opes.tgz" }, { "size": 3234909, "checksum": "md5:c3d5e001b49b2a8f96469b2c66388805", "description": "Selecting important structures according to weights, determining order of hole transfer, and free-energy profiles (Jupyter Notebook Figure 2c,d, and 3).", "key": "05.hole_transfer.tgz" }, { "size": 113998775, "checksum": "md5:fcbb972087d3dd3aaed10f3e56f8afa6", "description": "Free-energy surfaces of direct and indirect proton transfer (Jupyter Notebook Figure 4).", "key": "06.PT.tgz" }, { "size": 262919, "checksum": "md5:d304e64daa958b4e16274aee46f40724", "description": "Water density profiles and radial distribution functions of bulk water (Jupyter Notebook Figure S3).", "key": "07.NormalMD.tgz" }, { "size": 21945379, "checksum": "md5:2248d6581c56873e3fbda846d1e1d7e7", "description": "Reweight of Bi-O bond lengths (Jupyter Notebook Figure S8).", "key": "08.BiObond.tgz" }, { "size": 1720655, "checksum": "md5:234c56412fe30e56c286499f401c7153", "description": "Coordination numbers of surface Bi atoms (Jupyter Notebook Figure S1 and S2).", "key": "09.CNofBi.tgz" }, { "size": 33033681, "checksum": "md5:9972044d638fa5b8155b962d2bcff7e7", "description": "Hydrogen-bond analysis for proton transfer reactions (Jupyter Notebook Figure S10).", "key": "10.HB.tgz" }, { "size": 2839, "checksum": "md5:2aea8591841d6a514deea8d844b6035b", "description": "file description for all uploaded data", "key": "README.txt" } ], "keywords": [ "BiVO4-water interface", "proton-couple electron transfer", "machine learning potentials", "on-the-fly probability sampling", "OPES", "reweighting" ], "is_last": true, "conceptrecid": "2680", "description": "This entry provides original trajectories of on-the-fly probability enhanced sampling (OPES) and of molecular dynamics simulations and images of nudged-elastic band (NEB) calculation. Jupyter notebooks are provided for a NEB profile, NEB collective variables, free energy surface of the OPES simulations, hole transfer of the OPES simulations, proton transfer mechanisms of of the OPES simulations, water density profiles of MD simulations, radial distribution functions of MD simulations, reweight of Bi-O bonds of OPES simulations, coordination numbers of surface Bi atoms and hydrogen-bond analysis of proton transfer." }, "created": "2025-05-08T19:11:08.010935+00:00" }