You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.

Understanding the origin of superconducting dome in electron-doped MoSâ‚‚ monolayer


JSON Export

{
  "created": "2025-03-17T16:56:39.627932+00:00", 
  "revision": 2, 
  "updated": "2025-03-19T15:24:54.293719+00:00", 
  "id": "2603", 
  "metadata": {
    "is_last": true, 
    "doi": "10.24435/materialscloud:z1-aw", 
    "license": "Creative Commons Attribution 4.0 International", 
    "license_addendum": null, 
    "references": [
      {
        "citation": "N. Girotto Erhardt, J. Berges, S. Ponc\u00e9, D. Novko, arXiv:2412.02822 (2024)", 
        "url": "https://arxiv.org/abs/2412.02822", 
        "doi": "10.48550/arXiv.2412.02822", 
        "type": "Preprint", 
        "comment": "Preprint where the data is discussed"
      }
    ], 
    "description": "We investigate the superconducting properties of molybdenum disulphide (MoS\u2082) monolayer across a broad doping range, successfully recreating the so far unresolved superconducting dome. Our first-principles findings reveal several dynamically stable phases across the doping-dependent phase diagram. We observe a doping-induced increase in the superconducting transition temperature Tc, followed by a reduction in Tc due to the formation of charge density waves (CDWs), polaronic distortions, and structural transition from the H to the 1T\u2032 phase. Our work reconciles various experimental observations of CDWs in MoS\u2082 with its doping-dependent superconducting dome structure, which occurs due to the 1\u00d71 H to 2\u00d72 CDW phase transition.", 
    "mcid": "2025.44", 
    "status": "published", 
    "contributors": [
      {
        "email": "nina.girotto@uclouvain.be", 
        "affiliations": [
          "Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia"
        ], 
        "givennames": "Nina", 
        "familyname": "Girotto Erhardt"
      }, 
      {
        "email": "jan.berges@uni-bremen.de", 
        "affiliations": [
          "U Bremen Excellence Chair, Bremen Center for Computational Materials Science, and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany"
        ], 
        "givennames": "Jan", 
        "familyname": "Berges"
      }, 
      {
        "affiliations": [
          "European Theoretical Spectroscopy Facility, Institute of Condensed Matter and Nanosciences, Universit\u00e9 catholique de Louvain, 1348 Louvain-la-Neuve, Belgium", 
          "WEL Research Institute, 1300 Wavre, Belgium"
        ], 
        "givennames": "Samuel", 
        "familyname": "Ponc\u00e9"
      }, 
      {
        "affiliations": [
          "Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia"
        ], 
        "givennames": "Dino", 
        "familyname": "Novko"
      }
    ], 
    "edited_by": 576, 
    "_files": [
      {
        "description": "Overview of contents", 
        "key": "README.md", 
        "checksum": "md5:3b22839753c99e088435274842d0449d", 
        "size": 1076
      }, 
      {
        "description": "Data of Fig. 2(a\u2013d)", 
        "key": "fig2a-d.tar.gz", 
        "checksum": "md5:4cdb4ac5e83aaa4e3067d6304cb5e97e", 
        "size": 740670
      }, 
      {
        "description": "Code and data of Fig. 2(e)", 
        "key": "fig2e.tar.gz", 
        "checksum": "md5:0514e9cf3bd294ef9f49e5d79912aefb", 
        "size": 8777795
      }, 
      {
        "description": "Data of Fig. 3", 
        "key": "fig3.tar.gz", 
        "checksum": "md5:dbf67323c8b26e984707a9ab512f979c", 
        "size": 213504
      }, 
      {
        "description": "Data of Fig. 4", 
        "key": "fig4.tar.gz", 
        "checksum": "md5:ad524c1f940d23e3280ac430a32fe286", 
        "size": 517963
      }, 
      {
        "description": "Data of Fig. 5", 
        "key": "fig5.tar.gz", 
        "checksum": "md5:25bf433a60498198d5aec2e36ba287bd", 
        "size": 2127
      }, 
      {
        "description": "Code and data of Fig. 6", 
        "key": "fig6.tar.gz", 
        "checksum": "md5:811cb386a1b660699eae0a119a49e75b", 
        "size": 101716422
      }, 
      {
        "description": "Data of Supplementary Figure 11", 
        "key": "figS11.tar.gz", 
        "checksum": "md5:33e5ae11255efa1536913ee7b760da56", 
        "size": 750785
      }, 
      {
        "description": "Quantum ESPRESSO input files", 
        "key": "input.tar.gz", 
        "checksum": "md5:6f541b537c66c7de1f3f92ef30242a17", 
        "size": 202049
      }
    ], 
    "owner": 965, 
    "conceptrecid": "2602", 
    "version": 1, 
    "_oai": {
      "id": "oai:materialscloud.org:2603"
    }, 
    "keywords": [
      "PRACE", 
      "superconductivity", 
      "charge density wave", 
      "polarons", 
      "nonadiabaticity", 
      "first principles", 
      "lattice model", 
      "Migdal-Eliashberg", 
      "2D materials"
    ], 
    "id": "2603", 
    "publication_date": "Mar 19, 2025, 16:24:54", 
    "title": "Understanding the origin of superconducting dome in electron-doped MoS\u2082 monolayer"
  }
}