You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.

Unearthing the foundational role of anharmonicity in heat transport in glasses


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Fiorentino, Alfredo</dc:creator>
  <dc:creator>Drigo, Enrico</dc:creator>
  <dc:creator>Baroni, Stefano</dc:creator>
  <dc:creator>Pegolo, Paolo</dc:creator>
  <dc:date>2024-05-23</dc:date>
  <dc:description>The time-honored Allen-Feldman theory of heat transport in glasses is generally assumed to predict a finite value for the thermal conductivity, even if it neglects the anharmonic broadening of vibrational normal modes. We demonstrate that the harmonic approximation predicts that the bulk lattice thermal conductivity of harmonic solids inevitably diverges at any temperature, irrespective of configurational disorder, and that its ability to represent the heat-transport properties observed experimentally in most glasses is implicitly due to finite-size effects. Our theoretical analysis is thoroughly benchmarked against careful numerical simulations. Our findings thus reveal that a proper account of anharmonic effects is indispensable to predict a finite value for the bulk thermal conductivity in any solid material, be it crystalline or glassy. This record contains data and scripts to support the findings of the manuscript and ensure their reproducibility.</dc:description>
  <dc:identifier>https://materialscloud-archive-failover.cineca.it/record/2024.77</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:wc-yf</dc:identifier>
  <dc:identifier>mcid:2024.77</dc:identifier>
  <dc:identifier>oai:materialscloud.org:2191</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>MaX</dc:subject>
  <dc:subject>thermal transport</dc:subject>
  <dc:subject>amorphous solids</dc:subject>
  <dc:subject>glass</dc:subject>
  <dc:title>Unearthing the foundational role of anharmonicity in heat transport in glasses</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>