You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.

Low-energy modeling of three-dimensional topological insulator nanostructures


JSON Export

{
  "metadata": {
    "edited_by": 95, 
    "owner": 95, 
    "_oai": {
      "id": "oai:materialscloud.org:2129"
    }, 
    "description": "We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band k\u00b7p bulk model Hamiltonian for the Bi\u2082Se\u2083 family of topological insulators, we derive new parameter sets for Bi\u2082Se\u2083, Bi\u2082Te\u2083 and Sb\u2082Te\u2083. We consider a fitting strategy applied to ab initio band structures around the \u0393 point that ensures a quantitatively accurate description of the low-energy bulk and surface states, while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze  the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.\nThis dataset contains the data used in the corresponding publication.", 
    "mcid": "2024.106", 
    "id": "2129", 
    "license": "Creative Commons Attribution 4.0 International", 
    "license_addendum": null, 
    "references": [
      {
        "citation": "Edu\u00e1rd Zsurka, Cheng Wang, Julian Legendre, Daniele Di Miceli, Lloren\u00e7 Serra, Detlev Gr\u00fctzmacher, Thomas L. Schmidt, Philipp R\u00fc\u00dfmann, and Kristof Moors, Low-energy modeling of three-dimensional topological insulator nanostructures, Phys. Rev. Materials 8, 084204 (2024)", 
        "type": "Journal reference", 
        "url": "https://doi.org/10.1103/PhysRevMaterials.8.084204", 
        "comment": "Paper where the data is discussed", 
        "doi": "10.1103/PhysRevMaterials.8.084204"
      }, 
      {
        "citation": "E. Zsurka, C. Wang, J. Legendre, D. Di Miceli, L. Serra, D. Gr\u00fctzmacher, T. L. Schmidt, P R\u00fc\u00dfmann, and K. Moors, arXiv:2404.13959 (2024).", 
        "type": "Preprint", 
        "url": "https://doi.org/10.48550/arXiv.2404.13959", 
        "comment": "Paper where the data is discussed", 
        "doi": "10.48550/arXiv.2404.13959"
      }, 
      {
        "citation": "The JuKKR developers, JuDFTteam/JuKKR: v3.6 (v3.6), Zenodo. (2022)", 
        "type": "Software", 
        "url": "", 
        "comment": "Source code of the JuKKR code", 
        "doi": "10.5281/zenodo.7284739"
      }, 
      {
        "citation": "P. R\u00fc\u00dfmann, F. Bertoldo, J. Br\u00f6der, J. Wasmer, R. Mozumder, J. Chico, and S. Bl\u00fcgel, Zenodo (2021)", 
        "type": "Software", 
        "comment": "Source code for the AiiDA-KKR plugin", 
        "doi": "10.5281/zenodo.3628251"
      }, 
      {
        "citation": "P. R\u00fc\u00dfmann, F. Bertoldo, and S. Bl\u00fcgel, The AiiDA-KKR plugin and its application to high-throughput impurity embedding into a topological insulator. npj Comput Mater 7, 13 (2021)", 
        "type": "Journal reference", 
        "comment": "AiiDA-KKR method paper", 
        "doi": "10.1038/s41524-020-00482-5"
      }
    ], 
    "doi": "10.24435/materialscloud:mx-bn", 
    "keywords": [
      "DFT", 
      "topological insulator", 
      "tight-binding", 
      "k.p low energy model", 
      "effective Hamiltonian"
    ], 
    "contributors": [
      {
        "affiliations": [
          "Peter Gr\u00fcnberg Institute (PGI-9), Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany", 
          "JARA-Fundamentals of Future Information Technology, J\u00fclich-Aachen Research Alliance, Forschungszentrum J\u00fclich and RWTH Aachen University, 52425 J\u00fclich, Germany", 
          "Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg"
        ], 
        "familyname": "Zsurka", 
        "givennames": "Edu\u00e1rd"
      }, 
      {
        "affiliations": [
          "Peter Gr\u00fcnberg Institute (PGI-1), Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany"
        ], 
        "familyname": "Wang", 
        "givennames": "Cheng"
      }, 
      {
        "affiliations": [
          "Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg"
        ], 
        "familyname": "Legendre", 
        "givennames": "Julian"
      }, 
      {
        "affiliations": [
          "Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg"
        ], 
        "familyname": "Di Miceli", 
        "givennames": "Daniele"
      }, 
      {
        "affiliations": [
          "Institute for Cross-Disciplinary Physics and Complex Systems IFISC (CSIC-UIB), E-07122 Palma, Spain", 
          "Department of Physics, University of the Balearic Islands, E-07122 Palma, Spain"
        ], 
        "familyname": "Serra", 
        "givennames": "Lloren\u00e7"
      }, 
      {
        "affiliations": [
          "Peter Gr\u00fcnberg Institute (PGI-9), Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany", 
          "JARA-Fundamentals of Future Information Technology, J\u00fclich-Aachen Research Alliance, Forschungszentrum J\u00fclich and RWTH Aachen University, 52425 J\u00fclich, Germany", 
          "JARA-FIT Institute: Green IT, J\u00fclich-Aachen Research Alliance, Forschungszentrum J\u00fclich and RWTH Aachen University, 52425 J\u00fclich, Germany"
        ], 
        "familyname": "Gr\u00fctzmacher", 
        "givennames": "Detlev"
      }, 
      {
        "affiliations": [
          "Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg"
        ], 
        "familyname": "Schmidt", 
        "givennames": "Thomas L."
      }, 
      {
        "affiliations": [
          "Peter Gr\u00fcnberg Institute (PGI-1), Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany", 
          "Institute for Theoretical Physics and Astrophysics, University of W\u00fcrzburg, 97074 W\u00fcrzburg, Germany"
        ], 
        "familyname": "R\u00fc\u00dfmann", 
        "email": "p.ruessmann@fz-juelich.de", 
        "givennames": "Philipp"
      }, 
      {
        "affiliations": [
          "Peter Gr\u00fcnberg Institute (PGI-9), Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany", 
          "JARA-Fundamentals of Future Information Technology, J\u00fclich-Aachen Research Alliance, Forschungszentrum J\u00fclich and RWTH Aachen University, 52425 J\u00fclich, Germany"
        ], 
        "familyname": "Moors", 
        "givennames": "Kristof"
      }
    ], 
    "conceptrecid": "2128", 
    "version": 1, 
    "publication_date": "Jul 05, 2024, 10:28:21", 
    "is_last": true, 
    "status": "published", 
    "_files": [
      {
        "size": 2119, 
        "checksum": "md5:0664106485de9fcd8a34562150ebce23", 
        "description": "Description of the dataset", 
        "key": "README.md"
      }, 
      {
        "size": 876946, 
        "checksum": "md5:c63b5d8a255fa5d78c4a10217ba4274d", 
        "description": "Plotting scripts for DFT part", 
        "key": "DFT_plots_paper.ipynb"
      }, 
      {
        "size": 5280, 
        "checksum": "md5:ba62ccd489b84e11a2b3c920eb9943c9", 
        "description": "Requirements file for Python environment used in DFT part", 
        "key": "requirements_DFT_AiiDA.txt"
      }, 
      {
        "size": 4562105514, 
        "checksum": "md5:31b60118aaa0ca8ab6aa3eebbbb4de72", 
        "description": "AiiDA export file containing the DFT data", 
        "key": "export_DFT.aiida"
      }, 
      {
        "size": 9148040, 
        "checksum": "md5:edd1929c3ebf8bdd7fe8c983d8f90922", 
        "description": "Fitting of DFT data", 
        "key": "fit_ab_initio.zip"
      }
    ], 
    "title": "Low-energy modeling of three-dimensional topological insulator nanostructures"
  }, 
  "id": "2129", 
  "updated": "2024-09-11T13:30:01.290630+00:00", 
  "created": "2024-04-02T14:51:32.569479+00:00", 
  "revision": 12
}