You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.

Spin-dependent interactions in orbital-density-dependent functionals: non-collinear Koopmans spectral functionals


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Marrazzo, Antimo</dc:creator>
  <dc:creator>Colonna, Nicola</dc:creator>
  <dc:date>2024-06-03</dc:date>
  <dc:description>The presence of spin-orbit coupling or non-collinear magnetic spin states can have dramatic effects on the ground-state and spectral properties of materials, in particular on the band structure. Here, we develop non-collinear Koopmans-compliant functionals based on Wannier functions and density-functional perturbation theory, targeting accurate spectral properties in the quasiparticle approximation. Our non-collinear Koopmans-compliant theory involves functionals of four-component orbitals densities, that can be obtained from the charge and spin-vector densities of Wannier functions. We validate our approach on four emblematic non-magnetic and magnetic semiconductors where the effect of spin-orbit coupling goes from small to very large: the III-IV semiconductor GaAs, the transition-metal dichalcogenide WSe₂, the cubic perovskite CsPbBr₃, and the ferromagnetic semiconductor CrI₃. 
The predicted band gaps are comparable in accuracy to state-of-the-art many-body perturbation theory and include spin-dependent interactions and screening effects that are missing in standard diagrammatic approaches based on the random phase approximation. While the inclusion of orbital- and spin-dependent interactions in many-body perturbation theory requires self-screening or vertex corrections, they emerge naturally in the Koopmans-functionals framework.</dc:description>
  <dc:identifier>https://materialscloud-archive-failover.cineca.it/record/2024.83</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:kp-2v</dc:identifier>
  <dc:identifier>mcid:2024.83</dc:identifier>
  <dc:identifier>oai:materialscloud.org:2052</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>MARVEL/P4</dc:subject>
  <dc:subject>SNSF</dc:subject>
  <dc:subject>Spin-orbit coupling</dc:subject>
  <dc:subject>Spin-dependent interactions</dc:subject>
  <dc:subject>Non-collinear magnetism</dc:subject>
  <dc:subject>Spectral functionals</dc:subject>
  <dc:subject>Transition-metal dichalcogenide</dc:subject>
  <dc:subject>Metal halide perovskite</dc:subject>
  <dc:subject>Spin-torque</dc:subject>
  <dc:title>Spin-dependent interactions in orbital-density-dependent functionals: non-collinear Koopmans spectral functionals</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>