You are currently on a failover version of the Materials Cloud Archive hosted at CINECA, Italy.
Click here to access the main Materials Cloud Archive.
Note: If the link above redirects you to this page, it means that the Archive is currently offline due to maintenance. We will be back online as soon as possible.
This version is read-only: you can view published records and download files, but you cannot create new records or make changes to existing ones.

Published September 17, 2024 | Version v1
Dataset Open

Crystal structure validation of verinurad via proton-detected ultra-fast MAS NMR and machine learning

  • 1. Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 2. National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • 3. Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
  • 4. Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
  • 5. Bruker BioSpin GmbH & Co KG, 76275 Ettlingen, Germany
  • 6. Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
  • 7. Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden

* Contact person

Description

The recent development of ultra-fast MAS (>100 kHz) provides new opportunities for structural characterization in solids. Here we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of 1H resolution improvement at ultra-fast MAS and use solely 1H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts. This framework provides a new tool for elucidating chemical information from crystalline samples with limited sample volume and yields remarkably faster acquisition times compared to 13C-detected experiments, without the need to employ dynamic nuclear polarization.

Files

File preview

files_description.md

All files

Files (492.1 MiB)

Name Size
md5:f9d710323d2b60534ae67a719c05b96f
749 Bytes Preview Download
md5:2ec088fd922d934d39462c55dfc47b33
406.6 KiB Preview Download
md5:11db59eb753daa27c3522025da5f8e1a
1.0 MiB Preview Download
md5:b3bd8089ea7d0eb8b31a1d5a32656ce3
27.4 KiB Preview Download
md5:e4b7342c4f2caddd1a98a8ffeaf4f69a
3.3 MiB Preview Download
md5:179369f56a39d2f1c32c8a98e9d18047
487.4 MiB Preview Download

References

Journal reference (Paper with published SXRD structure of verinurad)
O. T. Ring, B. R. Hayter, T. O. Ronson, L. R. Agnew, I. W. Ashworth, J. Cherryman, M. A. Y. Gall, P. R. Hamilton, P. A. Inglesby, M. F. Jones, A. L. Lamacraft, A. J. Leahy, D. McKinney, L. Miller-Potucka, L. Powell, O. D. Putra, A. J. Robbins, S. Tomasi and R. A. Wordsworth, Organic Process Research & Development 26, 936-948 (2022), doi: 10.1021/acs.oprd.1c00284

Journal reference (External reference to the paper)
D. Torodii, J. Holmes, P. Moutzouri, S. Nilsson Lill, M. Cordova, A. Pinon, K. Grohe, S. Wegner, O. Putra, S. Norberg, A. Welinder, S. Schantz, L. Emsley, Faraday Discussion 225, 143-158, 2025, doi: 10.1039/d4fd00076e

Journal reference (External reference to the paper)
D. Torodii, J. Holmes, P. Moutzouri, S. Nilsson Lill, M. Cordova, A. Pinon, K. Grohe, S. Wegner, O. Putra, S. Norberg, A. Welinder, S. Schantz, L. Emsley, Faraday Discussion 225, 143-158, 2025