Training sets based on uncertainty estimates in the cluster-expansion method
- 1. Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- 2. Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- 3. School of Engineering, Brown University, Providence, RI 02912, United States of America
- 4. Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
* Contact person
Description
Cluster expansion (CE) has gained an increasing level of popularity in recent years, and many strategies have been proposed for training and fitting the CE models to first-principles calculation results. The paper reports a new strategy for constructing a training set based on their relevance in Monte Carlo sampling for statistical analysis and reduction of the expected error. We call the new strategy a "bootstrapping uncertainty structure selection" (BUSS) scheme and compared its performance against a popular scheme where one uses a combination of random structure and ground-state search (referred to as RGS). The provided dataset contains the training sets generated using BUSS and RGS for constructing a CE model for disordered Cu2ZnSnS4 material. The files are in the format of the Atomic Simulation Environment (ASE) database (please refer to ASE documentation for more information https://wiki.fysik.dtu.dk/ase/index.html). Each `.db` file contains 100 DFT calculations, which were generated using iteration cycles. Each iteration cycle is referred to as a generation (marked with `gen` key in the database) and each database contains 10 generations where each generation consists of 10 training structures. See more details in the paper.
Files
File preview
files_description.md
All files
References
Journal reference (Paper in which the method is described) D. Kleiven, J. Akola, A. Peterson, T. Vegge, J.H. Chang, J. Phys. Energy 3 034012 (2021), doi: 10.1088/2515-7655/abf9ef
Journal reference (Paper in which the method is described) D. Kleiven, J. Akola, A. Peterson, T. Vegge, J.H. Chang, J. Phys. Energy 3 034012 (2021)